Combining Mixture Components for Clustering

Gilles Celeux INRIA, Saclay Île-de-France

Joint work with Jean-Patrick Baudry, Adrian Raftery, Kenneth Lo and Raphaël Gottardo Supported by NICHD and NSF

Journées Franco-Roumaines 2010, Poitiers 27 août 2010

Model-based clustering

- Model-based clustering
- Choice of the number of components: BIC and ICL

- Model-based clustering
- Choice of the number of components: BIC and ICL
- Combining mixture components for clustering

- Model-based clustering
- Choice of the number of components: BIC and ICL
- Combining mixture components for clustering
- Simulation example

- Model-based clustering
- Choice of the number of components: BIC and ICL
- Combining mixture components for clustering
- Simulation example
- Flow cytometry example

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

ullet where $\Sigma_g = \lambda_g D_g A_g D_g^T$

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

- ullet where $\Sigma_g = \lambda_g D_g A_g D_g^{\mathsf{T}}$
- λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

- ullet where $\Sigma_g = \lambda_g D_g A_g D_g^{\mathsf{T}}$
- $\lambda_g =$ determinant of Σ_g : controls the *volume* of the *g*th cluster
- $A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster
- $A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$
 - controls the *shape* of the *g*th cluster

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- $\lambda_g =$ determinant of Σ_g : controls the *volume* of the *g*th cluster
- $A_g = \operatorname{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$
 - controls the shape of the gth cluster
 - $(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster
- $A_g = \operatorname{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$
 - controls the shape of the gth cluster
 - $(1 \ge \alpha_2 \ge ... \ge \alpha_d > 0)$
 - E.g. α_2 close to zero: Cluster g concentrated about a line.

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

- ullet where $\Sigma_g = \lambda_g D_g A_g D_g^{\mathsf{T}}$
- $oldsymbol{\delta}$ $\lambda_g=$ determinant of Σ_g : controls the *volume* of the *g*th cluster
- $A_g = \operatorname{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$
 - controls the shape of the gth cluster
 - $(1 \ge \alpha_2 \ge ... \ge \alpha_d > 0)$
 - E.g. α_2 close to zero: Cluster g concentrated about a line.
 - E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.

$$y_i \sim \sum_{g=1}^G \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster
- $A_g = \operatorname{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$
 - controls the shape of the gth cluster
 - $(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$
 - ullet E.g. α_2 close to zero: Cluster g concentrated about a line.
 - E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.
- D_g = Eigenvectors: Control the *orientation* of the gth cluster

$$y_i \sim \sum_{g=1}^G \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- ullet $\lambda_g=$ determinant of Σ_g : controls the *volume* of the *g*th cluster
- $\bullet \ \ A_g = \mathsf{diag}\{1,\alpha_{2g},\ldots,\alpha_{dg}\}$
 - controls the shape of the gth cluster
 - $(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$
 - ullet E.g. α_2 close to zero: Cluster g concentrated about a line.
 - E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.
- \bullet D_g = Eigenvectors: Control the *orientation* of the gth cluster
- Different clustering models can be obtained by constraining each of volume, shape and orientation to be constant across clusters, or by allowing them to vary (Banfield & Raftery, 93, Celeux & Govaert 95)

• Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm

- Maximum likelihood estimation for the mixture model parameters $\theta=(\tau,\mu,\Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.
 - We approximate the Bayes factors via

 $BIC = 2 \log \text{maximized likelihood} - (\# \text{ parameters}) \log(n)$

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.
 - We approximate the Bayes factors via

 $BIC = 2 \log \text{maximized likelihood} - (\# \text{ parameters}) \log(n)$

 This is consistent for the number of components (Keribin 2000), and also provides consistent density estimates (Roeder and Wasserman 1997).

Choice of Number of Components: Simulation Study

10 experiments based on distribution of estimates in literature (Steele & Raftery 2010)

Choice of Number of Components: Simulation Study

10 experiments based on distribution of estimates in literature (Steele & Raftery 2010)

Times right model chosen/50 (bigger is better)

9			/ (00 /			,
Expt.	BIC	Stephens	AIC	ICL	UIP	DIC
1	50	49	45	50	44	20
2	50	48	38	50	39	17
3	50	50	42	50	40	22
4	49	48	34	50	30	14
5	49	46	33	49	19	16
6	23	29	35	0	40	20
7	50	42	46	19	34	23
8	47	45	45	16	33	14
9	50	41	37	39	22	10
10	50	43	39	50	7	20
Total	468	441	394	373	308	176
% Correct	94	88	79	75	62	35

Choice of Number of Components: Simulation Study

10 experiments based on distribution of estimates in literature (Steele & Raftery 2010)

MISE of density estimate (smaller is better)

		,	,			,
Expt.	BIC	Stephens	AIC	ICL	UIP	DIC
1	0.19	0.21	0.22	0.19	0.23	0.67
2	0.21	0.24	0.33	0.21	0.31	0.65
3	0.35	0.35	0.41	0.35	0.50	1.32
4	0.48	0.51	1.30	0.48	1.35	2.24
5	0.60	1.00	1.58	0.60	2.75	3.20
6	1.53	1.13	0.86	2.31	0.77	0.76
7	0.23	0.24	0.23	2.18	0.25	0.28
8	0.55	0.39	0.37	2.45	0.42	0.61
9	0.37	0.75	0.47	0.61	0.58	0.77
10	0.34	0.44	0.39	0.34	0.75	0.58
Mean	0.48	0.53	0.62	0.97	0.79	1.11

ullet Problem: Cluster eq One mixture component, if its distribution is not Gaussian

- ullet Problem: Cluster eq One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components

- ullet Problem: Cluster eq One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters ≤ # Mixture components

- Problem: Cluster ≠ One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters $\leq \#$ Mixture components
- First solution: Instead of BIC, which approximates the log integrated likelihood of the data,

$$\log p(\mathbf{x}|K) = \int p(\mathbf{x}|K, \theta_K) \pi(\theta_K) d\theta_K,$$

Choosing the Number of Clusters: ICL, a first solution

- Problem: Cluster ≠ One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters ≤ # Mixture components
- First solution: Instead of BIC, which approximates the log integrated likelihood of the data,

$$\log p(\mathbf{x}|K) = \int p(\mathbf{x}|K, \theta_K) \pi(\theta_K) d\theta_K,$$

Choosing the Number of Clusters: ICL, a first solution

- Problem: Cluster ≠ One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters ≤ # Mixture components
- First solution: Instead of BIC, which approximates the log integrated likelihood of the data,

$$\log p(\mathbf{x}|K) = \int p(\mathbf{x}|K, \theta_K) \pi(\theta_K) d\theta_K,$$

use ICL, which approximates the log integrated likelihood of the completed data,

$$ICL(K) = \log p(\mathbf{x}, \mathbf{z} \mid K) = \int_{\Theta_K} p(\mathbf{x}, \mathbf{z} \mid K, \theta) \pi(\theta \mid K) d\theta$$

Choosing the Number of Clusters: ICL, a first solution

- Problem: Cluster ≠ One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters ≤ # Mixture components
- First solution: Instead of BIC, which approximates the log integrated likelihood of the data,

$$\log p(\mathbf{x}|K) = \int p(\mathbf{x}|K, \theta_K) \pi(\theta_K) d\theta_K,$$

use ICL, which approximates the log integrated likelihood of the completed data,

$$ICL(K) = \log p(\mathbf{x}, \mathbf{z} \mid K) = \int_{\Theta_K} p(\mathbf{x}, \mathbf{z} \mid K, \theta) \pi(\theta \mid K) d\theta$$

$$\approx \log p(\mathbf{x}, \hat{\mathbf{z}} \mid K, \hat{\theta}_K) - \frac{\nu_K}{2} \log n$$

(Biernacki, Celeux & Govaert 2000)

 $\bullet~ICL(K) \approx BIC(K)$ — the mean entropy, Ent(K),

- $ICL(K) \approx BIC(K)$ the mean entropy, Ent(K),
 - $\operatorname{Ent}(K) = -\sum_{k=1}^K \sum_{i=1}^n t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \geq 0$

- ICL(K) \approx BIC(K) the mean entropy, Ent(K),
 - $\operatorname{Ent}(K) = -\sum_{k=1}^K \sum_{i=1}^n t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \geq 0$
 - where t_{ik} = conditional probability that x_i is from kth mixture component

- $ICL(K) \approx BIC(K)$ the mean entropy, Ent(K),
 - $\operatorname{Ent}(K) = -\sum_{k=1}^K \sum_{i=1}^n t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \geq 0$
 - where $t_{ik} =$ conditional probability that \mathbf{x}_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC

- ICL(K) \approx BIC(K) the mean entropy, Ent(K),
 - $\operatorname{Ent}(K) = -\sum_{k=1}^K \sum_{i=1}^n t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \geq 0$
 - where t_{ik} = conditional probability that x_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC
- Problem: If ICL is used to estimate the number of mixture components, it tends to underestimate it when there are poorly separated components, and so can fit the data poorly

- ICL(K) \approx BIC(K) the mean entropy, Ent(K),
 - $\operatorname{Ent}(K) = -\sum_{k=1}^K \sum_{i=1}^n t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \geq 0$
 - where t_{ik} = conditional probability that x_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC
- Problem: If ICL is used to estimate the number of mixture components, it tends to underestimate it when there are poorly separated components, and so can fit the data poorly
- Goal: Find a method that gives the best of both worlds:

- $ICL(K) \approx BIC(K)$ the mean entropy, Ent(K),
 - $\operatorname{Ent}(K) = -\sum_{k=1}^K \sum_{i=1}^n t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \geq 0$
 - where t_{ik} = conditional probability that x_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC
- Problem: If ICL is used to estimate the number of mixture components, it tends to underestimate it when there are poorly separated components, and so can fit the data poorly
- Goal: Find a method that gives the best of both worlds:
 - fits the data well (like BIC), and

- $ICL(K) \approx BIC(K)$ the mean entropy, Ent(K),
 - $\operatorname{Ent}(K) = -\sum_{k=1}^K \sum_{i=1}^n t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \geq 0$
 - where t_{ik} = conditional probability that x_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC
- Problem: If ICL is used to estimate the number of mixture components, it tends to underestimate it when there are poorly separated components, and so can fit the data poorly
- Goal: Find a method that gives the best of both worlds:
 - fits the data well (like BIC), and
 - identifies clusters rather than mixture components (like ICL)

ullet Start with a mixture model that fits the data well, with K chosen by BIC

- \bullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components

- \bullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

- ullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:

- ullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.

- ullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different

- \bullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters

- ullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:

- ullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:
 - substantive grounds, or

- ullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:
 - substantive grounds, or
 - choose the number selected by ICL, or

- ullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:
 - substantive grounds, or
 - choose the number selected by ICL, or
 - seek an elbow in the plot of the entropy versus # clusters, or

- ullet Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:
 - substantive grounds, or
 - choose the number selected by ICL, or
 - seek an elbow in the plot of the entropy versus # clusters, or
 - use piecewise regression to find the elbow (Byers & Raftery 1998)

Simulated data

Simulated data

BIC: K=6. Ent=122

Simulated data

BIC: K=6. Ent=122

ICL: K=4. Ent=3

Simulated data

Combined: K=5. Ent=41

BIC: K=6. Ent=122

ICL: K=4. Ent=3

Simulated data

BIC: K=6. Ent=122

ICL: K=4. Ent=3

Combined: K=5. Ent=41

Combined: K=4. Ent=5

Simulated data

Combined: K=5. Ent=41

BIC: K=6. Ent=122

Combined: K=4. Ent=5

ICL: K=4. Ent=3

Entropy plot

(Brinkman et al 2007; Lo et al 2008)

(Brinkman et al 2007; Lo et al 2008)

• 9,083 cells from a graft-versus-host-disease (GvHD) patient

(Brinkman et al 2007; Lo et al 2008)

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8

(Brinkman et al 2007; Lo et al 2008)

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8β+ region corresponds to cyan, green, red components.

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't
 - \Longrightarrow substantively choose 9 clusters

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't
 - \Longrightarrow substantively choose 9 clusters
 - retains the 6 important CD3+ cell sub-populations

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't

 - retains the 6 important CD3+ cell sub-populations
- Entropy plot also has elbow at 9 clusters

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8 β , CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8eta- region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't
 - ■ substantively choose 9 clusters
 - retains the 6 important CD3+ cell sub-populations
- Entropy plot also has elbow at 9 clusters
 - \Longrightarrow statistical method recovers substantive result

Flow Cytometry Data: Results for CD3+ Clusters

Flow Cytometry Data: Results for CD3+ Clusters BIC: K=12. Ent=4782

Flow Cytometry Data: Results for CD3+ Clusters BIC: K=12. Ent=4782 ICL: K=9. Ent=3235

Flow Cytometry Data: Results for CD3+ Clusters BIC: K=12. Ent=4782 ICL: K=9. Ent=3235

Combined: K=9. Ent=1478

Flow Cytometry Data: Results for CD3+ Clusters BIC: K=12. Ent=4782 ICL: K=9. Ent=3235

Combined: K=9. Ent=1478

Entropy plot

• Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data

- Model-based clustering with the number of mixture components, K, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component

- Model-based clustering with the number of mixture components, K, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage

- Model-based clustering with the number of mixture components, K, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings

- Model-based clustering with the number of mixture components, K, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - User can choose between them substantively or using the entropy plot, or ICL

- Model-based clustering with the number of mixture components, K, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - User can choose between them substantively or using the entropy plot, or ICL
- Worked well in simulation experiments

- Model-based clustering with the number of mixture components, K, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - User can choose between them substantively or using the entropy plot, or ICL
- Worked well in simulation experiments
- Found a biologically satisfactory solution in the flow cytometry dataset

- Model-based clustering with the number of mixture components, K, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - User can choose between them substantively or using the entropy plot, or ICL
- Worked well in simulation experiments
- Found a biologically satisfactory solution in the flow cytometry dataset
- Paper is to appeared in the next issue of *Journal of Computational* and *Graphical Statistics*

- Model-based clustering with the number of mixture components, K, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - \bullet User can choose between them substantively or using the entropy plot, or ICL
- Worked well in simulation experiments
- Found a biologically satisfactory solution in the flow cytometry dataset
- Paper is to appeared in the next issue of Journal of Computational and Graphical Statistics
- All the described material is available in the MIXMOD software http://www.mixmod.org

